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Abstract—Understanding peculiar and anomalous behavior
of machine learning models for specific data subgroups is a
fundamental building block of model performance and fairness
evaluation. The analysis of these data subgroups can provide
useful insights into model inner working and highlight its poten-
tially discriminatory behavior. Current approaches to subgroup
exploration ignore the presence of hierarchies in the data, and
can only be applied to discretized attributes. The discretization
process required for continuous attributes may significantly affect
the identification of relevant subgroups.

We propose a hierarchical subgroup exploration technique to
identify anomalous subgroup behavior at multiple granularity
levels, along with a technique for the hierarchical discretization
of data attributes. The hierarchical discretization produces,
for each continuous attribute, a hierarchy of intervals. The
subsequent hierarchical exploration can exploit data hierarchies,
selecting for each attribute the optimal granularity to identify
subgroups that are both anomalous, and with enough elements
to be statistically and practically significant. Compared to non-
hierarchical approaches, we show that our hierarchical approach
is more powerful in identifying anomalous subgroups and more
stable with respect to discretization and exploration parameters.

Index Terms—model evaluation, fairness, subgroup discovery,
discretization, generalized itemsets, hierarchies, data slicing

I. INTRODUCTION

The pervasiveness of black-box machine learning models
in a variety of applications has brought increased interest
in Explainable AI research. Furthermore, in critical domains
such as health care and insurance, their application has raised
concerns about algorithmic bias and fairness [1]–[3]. Typically,
model performance is analyzed at the global level, i.e., for the
overall dataset, or for specific class labels of interest. However,
the identification of problematic data subgroups, identified by
slicing the dataset on the value of specific attributes, is relevant
in multiple applications, e.g, the evaluation of model fairness
and model validation. Understanding model behavior at the
subgroup level allows the identification of anomalous, and
potentially problematic, behaviors of a model in specific data
subgroups, characterized by a different model performance
with respect to the overall dataset.

Recently, several works have been proposed to identify
and characterize subgroups for which a peculiar behavior
is observed [4]–[11]. Works as Slice Finder [4], DIVEX-
PLORER [5], and SliceLine [6] identify possibly-overlapping
data subgroups for which a model performs differently. They

Data subgroup FPR ∆FPR Support

Entire dataset 0.088 0.000 1
#prior>3 0.219 0.131 0.29
#prior>8 0.384 0.295 0.11
age<27 0.155 0.067 0.31
age<27, #prior>3 0.377 0.288 0.05

TABLE I: Example of impact of discretization of the attribute
#prior on false positive rate (FPR) and FPR divergence for
the corresponding identified data subgroups (compas dataset).

automatically identify the most relevant attributes and attribute
values on which data subgroups are defined. More specifically,
the subsets are identified by slicing the data in the attribute
domain. Each subgroup is a subset of the data characterized
by a set of attribute values. The subgroups are defined in
terms of patterns, or itemsets, which are conjunctions of
attribute=value pairs. Consequently, the subgroups are directly
interpretable.

Current subgroup identification approaches suffer from two
important limitations: (i) ignoring the presence of hierarchies
in data, which may allow a wider exploration of data slices,
and (ii) requiring the data attributes to be discrete, that is, to
be able to assume only a finite, small set of values.

A hierarchy induces a nested partitioning of attribute values
into subgroups with different levels of detail in data representa-
tion. Traditionally, hierarchies have been exploited to represent
structural dependencies (e.g., functional dependencies) be-
tween attribute values. For example, a geographical hierarchy
may be induced on geographic locations by considering the
geographic coordinates, city, state, and country attributes,
which provide a growing generality (or decreasing detail level)
in the data representation.

Hierarchies may be explicitly represented by structural
dependencies between attributes, or revealed by analyzing
data. For categorical attributes, if hierarchical dependencies
between attributes are not explicitly defined, they can be auto-
matically derived, e.g., by considering functional dependencies
between attributes [12], [13]. As an alternative, hierarchical
information on attributes may be directly provided by means
of user-defined dependencies. For continuous attributes, the
discretization process may be exploited to induce a hierarchy
of data values. Hence, discretization plays an important role



in subgroup identification, both in the identification of rele-
vant attribute value ranges, and in enabling the hierarchical
exploration of continuous attributes.

For a continuous attribute, subgroups can be obtained by
considering value ranges. However, the choice of ranges
affects the detection of problematic behaviors. To illustrate
this concept, consider the compas dataset [14]. It contains de-
mographic information and the criminal history of defendants
screened in Broward County, Florida, during 2013 and 2014
and collected by ProPublica. For each defendant, the dataset
includes a score of recidivism risk derived by a proprietary
algorithm, and the information on whether the defendant did
actually recidivate. We consider the predicted high-risks scores
as the predicted positive class of recidivism.

Table I shows the false positive rate (FPR) of the subgroups
identified by different ranges on the number of prior offenses
(attribute #prior). Along with the false positive rate, we
report the difference in the behavior of the machine learning
algorithm on the data subgroup vs. the entire dataset: this
behavior difference is the divergence of [5]. For the false
positive rate, the divergence represents the difference between
the false positive rate of the subgroup and the overall one. The
entire dataset has a false positive rate of 0.088.

Consider now two different subgroups, (i) defendants with
more than 3 prior offenses, and (ii) defendants with more
than 8 prior offenses. Both groups show a (high) divergence
from the overall behavior. However, defendants in group (ii)
show a (much) higher divergence than those in group (i).
This illustrates how interval definition for continuous attribute
discretization may significantly affect the effectiveness of
anomalous subgroups identification.

We propose a novel discretization strategy that aims at
supporting the anomalous subgroup identification algorithms.
Given a continuous attribute, our discretization method builds
a hierarchy of discretization intervals, characterized by a
different granularity at each level of the tree, that can all be
exploited by slicing techniques to detect the most interesting
slices. These intervals can then be fed to subgroup-exploration
tools, along with the already-discrete attributes. We base this
paper on the subgroup-exploration approach of [5], but other
exploration methods, such as those of [4], [6], could be used.

Our discretization method naturally identifies a hierarchy or
taxonomy for the attributes. We integrated our discretization
approach into H-DIVEXPLORER, a novel subgroup identifica-
tion approach that, by means of generalized itemset discovery
[15], [16], directly exploits the hierarchical structure derived
by the tree. As a result, we are able to identify data subgroups
at any level of the taxonomy. Consider again the example for
the compas dataset. Using the taxonomy in Figure 1, we are
able to derive data subgroups characterized both by #prior>8
and #prior>3 and select the most interesting subgroups among
them. Suppose that we want to identify data subgroups with at
least a support of 0.05. The hierarchical exploration automat-
ically explores associations at multiple granularity. Therefore,
we can identify the subgroups of defendants with age greater
than 27 and more than 3 prior offenses as divergent. Using

instead only a fixed discretization with #prior>8, we cannot
explore the association with defendant with age lower than
27 since this subgroup is characterized by an excessively low
support (0.01).

Our main contributions are as follows.
Hierarchical approach to group detection. Traditional sub-
group detection approaches do not consider the presence of
hierarchies on attributes. Hence, the attribute space exploration
they perform is limited to data slices identified at the most
detailed level of the hierarchy. This limits the flexibility of the
exploration: if fine slices are used to analyze some attributes
in detail, then these slices cannot be combined with slices
for other attributes without obtaining overly small subgroups,
which may not be statistically or practically significant. We
show that, by defining hierarchies over data and exploring data
at higher levels in the hierarchy, thus considering a coarser
granularity, it is possible to detect anomalous subgroups in a
far more flexible way, selecting an appropriate granularity for
each attribute.
Hierarchical discretization. Usually, discretizing a dataset
means turning its continuous attributes into discrete ones,
mapping the continuous values into non-overlapping ranges.
We show that we can obtain a much richer exploration
of subgroups by associating the continuous values with a
hierarchy of ranges, at multiple levels of granularity.
Individual-attribute trees for discretization. Trees such as
decision trees are constructed by considering all attributes.
In contrast, we show that constructing individual trees for
each attribute enables us to to both to discretize attributes
and induce a hierarchy. For example, discretizing the #prior
attribute (number of prior offenses) for compas can use a tree
such as the one in Figure 1.
Divergence-aware tree construction. The construction of
decision trees is driven by attributes of individual data points,
such as the class label. In contrast, divergence is an ensemble
property. We illustrate how the gain and support criteria
used in generating decision trees can be adapted to obtain
discretizations that reveal divergent subgroups.
Hierarchical subgroup identification. H-DIVEXPLORER is
a pipeline for discretization and hierarchical subgroup analysis
capable of handling datasets with predefined hierarchies and
continuous attributes. H-DIVEXPLORER first uses trees to
discretize continuous attributes into interval hierarchies. The
available hierarchies are then fed, jointly with the dataset, to
our hierarchical exploration algorithm, based on an extension
of [5], which detects anomalous subgroups with different
granularities.
Polarity pruning. To improve the performance of subgroup
exploration, we also propose polarity pruning, an heuristic that
allows pruning the search space while preserving the quality
of identified subgroups.

We provide open-source code implementing H-
DIVEXPLORER at https://github.com/elianap/h-divexplorer.

The paper is organized as follows. Section II discusses
related works. Section III provides our main definitions and
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Fig. 1: Item hierarchy for the #prior attribute on the FPR of
the compas dataset obtained via tree discretization.

preliminaries. Section IV introduces the notion of generalized
subgroup and item hierarchy. Section V describes the tree
discretization process and outlines our hierarchical subgroup
exploration approach H-DIVEXPLORER. Section VI presents
experimental results, showing the benefits of the hierarchical
approach, and offering a detailed comparison with prior non-
hierarchical approaches. Section VII draws conclusions.

II. RELATED WORK

We address related work in the areas of (i) anomalous
subgroup detection and (ii) discretization.

Anomalous subgroup detection: Several recent works ad-
dress the automatic identification of subgroups with anomalous
behavior [4]–[6], [17], [18]. Among these works, the most
effective approaches in subgroup identification exploit the
notion of pattern and lattice search to identify data slices
(i.e., subgroups) [4]–[6]. These works share their subgroup
representation, but characterize and build the subgroups dif-
ferently. The anomalous behavior of a subgroups is generally
characterized with respect to the overall behavior (e.g., in [5]
in terms of divergence) or with respect to its counterpart (e.g.,
in [4] in terms of effect size as a function of the distribution
of loss differences).

Tree-based approaches to subgroup identification are ex-
plored in [4] and the Error Analysis dashboard of the Re-
sponsible AI Toolbox [18]. These approaches use the trees to
partition the dataset into non-overlapping subgroups. Lattice
search approaches have been proposed in [4]–[6]; these ap-
proaches consider attribute lattices. These approaches ignore
the presence of hierarchies in data.

Lattice-based approaches suffer from a significant shortcom-
ing: They require all attributes to be discrete. Any continuous
attribute needs to be discretized before subgroup identifica-
tion. Discretization induces a non-overlapping partitioning of
attribute values. Hence, the discretization step is crucial. If it
is too coarse, or if anomalous and normal data coexist in the
same bucket, discretization may hamper the identification of
the anomalous subgroups. In our work, we propose a hier-
archical discretization approach for continuous attributes. The
discretization method is driven by the notion of divergence [5]

to improve the quality of the identified buckets. Differently
from all the mentioned approaches [4]–[6], [18], our hier-
archical subgroup exploration approach leverages predefined
hierarchies on categorical attributes and item hierarchies ob-
tained from our hierarchical discretization approach to reveal
anomalous subgroups at multiple granularity levels.

Discretization: Discretization approaches can be catego-
rized into supervised and unsupervised [19]. Unsupervised
methods discretize the data without considering the target
variable, while supervised ones use the target variable infor-
mation to discretize the data. Our approach falls into the latter
category. When discretization is applied as a step towards
classification, as in the construction of classification trees,
the class label becomes the target. Entropy is typically used
to measure the class information entropy by decision tree-
induction algorithms (e.g., ID3 [20] and C4.5 [21] ). For ex-
ample, in [22], the authors propose a C4.5-based discretization,
in which the C4.5 decision tree algorithm is applied for each
continuous feature separately to determine the splitting values.
In [23], each attribute is recursively split to minimize the class
entropy using the minimum description length as a stopping
criterion.

We also leverage trees for discretization, but with two
differences. First, we use as supervision target not the class
label, but quantities directly connected to the anomaly we seek
to detect. In particular, we use either divergence itself as a
measure of the anomalous behavior, or entropy with respect
to a three-valued (true, false, undefined) outcome function
that is used to define the divergence. Second, we use all tree
nodes, rather than just the leaves, and obtain a hierarchical dis-
cretization. Thus, our approach generalizes former discretiza-
tion approaches by deriving a hierarchy of discretizations at
different granularity (see, e.g., Figure 1), which can be fed to
our subgroup identification algorithms to explore discretization
intervals at different detail level. In this work, we extend the
DIVEXPLORER [5] algorithm to explore all the subgroups
that can be formed with discretizations at different hierarchy
levels. This flexibility is not available in previous lattice-based
approaches [4]–[6]. Differently from [4], [18], we leverage
trees to identify interesting ranges of continuous attributes in a
hierarchical representation, rather than anomalous subgroups.

III. PRELIMINARIES

Our goal is to identify regions of a dataset that differ from
the whole dataset with respect to some statistics of interest,
such as precision, recall, false-positive or false-negative rate.
In this section, we first define datasets, then item and itemsets,
which allow us to define data subgroups. We then outline
the notion of divergence as a measure of peculiar behavior,
Finally, we describe DIVEXPLORER, which implements non-
hierarchical subgroup exploration.

A. Datasets and Itemsets

We consider a dataset D with attributes A = {A1, ..., An}
consisting of a set of instances over A. Each attribute Ai ∈ A
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has domain DAi
. An attribute can be categorical or continu-

ous: the domain of a categorical attribute is a finite set; the
domain of a continuous attribute is the set IR of real numbers.
We denote by C ⊆ A the set of continuous attributes of the
dataset. An instance x ∈ D of the dataset assigns a value x(A)
to each attribute A ∈ A, with x(A) ∈ DA. We indicate with
D the set of all instances of the dataset. We use #S to denote
the number of elements of a set S; in particular, #D is the
number of dataset instances.

An item α is a constraint on an attribute:
• For a categorical attribute A ∈ A \ C, an item has the

form A = a for a ∈ DA.
• For a continuous attribute A ∈ C, an item has the form

A ∈ J , for an (open or closed, finite or infinite) interval
J of real numbers.

We denote by Dα ⊆ DA the subset of the domain of A that
satisfies the item α.

We define subgroups of data instances via sets of items,
known as itemsets or patterns. Given a set of items I, an
itemset I over I is a set of items I ⊆ 2I , such that no two
items α, β ∈ I refer to the same attribute. The length |I| of an
itemset I is simply its cardinality. An example of itemset is
{age ∈ [25, 45], sex = Female}. An instance x ∈ D satisfies
an item α, written x |= α, if x satisfies the constraint α, and
x satisfies an itemset I , written x |= I , if it satisfies all the
constraints of the items in I . For example, a data instance with
age = 28 and sex = Female satisfies the itemset I = {age ∈
[25, 45], sex = Female}. We denote by DI = {x ∈ D | x |=
I} the set of instances that satisfy an itemset I . The support
sup(I) of an itemset I is the fraction of instances that satisfy
it, given by sup(I) = #DI

#D . For a given support threshold s,
an itemset (or pattern) I is frequent if sup(I) ≥ s.

B. Divergence

To capture how a subgroup differs from the entire dataset,
we use the notion of divergence [5], which is the difference
between a specified statistics as measured on the subgroup,
and as measured on the whole dataset. Precisely, a statistic
f : 2D 7→ IR associates a value f(I) to every subset I ⊆ D
of dataset instances, and the divergence of I with respect to
f is given by ∆f (I) = f(I)− f(D). For example, the false-
positive divergence of a subgroup is the difference between the
false-positive rate measured on the subgroup, and measured
on the whole dataset. In practice, we define statistics via
outcome functions, which associate an outcome in IR ∪ {⊥}
with each instance. Given an outcome function o, we compute
the divergence of an itemset I via

o(I) = E{o(x) | x |= I, o(x) ̸= ⊥} ,

where E is the average operator. Different outcome functions
allow us to easily define statistics such as false and true
positive rates and the corresponding negative rates [5], rates
related to rankings [24], and more. Statistical significance of
the divergence is measured by its t-value, computed according
to the Welch’s t-test as in [5].

C. DIVEXPLORER

Given a set of items I and a support threshold s, DIVEX-
PLORER [5] computes the divergence of all frequent itemsets
over I. The lattice-based exploration of the frequent itemsets
is efficient, since DIVEXPLORER integrates the computation
of divergence into the well-known frequent pattern mining
algorithms Apriori [25] and FP-Growth [26]. In particular, DI-
VEXPLORER accumulates the statistics required for divergence
computation within the algorithms that explore all frequent
itemsets, so that the divergence can be computed at essentially
no additional cost compared with exploration. The support
threshold s acts as a stopping criterion, limiting the search
to the frequent itemsets that have support at least s. Limiting
the exploration to frequent itemsets is justified: the divergence
of small subgroups may not be statistically significant, and
in any case, anomalies affecting larger subgroups are more
interesting, from the point of view of anomaly detection, than
anomalies affecting smaller subgroups.

IV. GENERALIZED SUBGROUPS

The exploration implemented in DIVEXPLORER is based
on a fixed set of items I, computed before the exploration
starts. This carries two drawbacks. The first is that con-
tinuous attributes need to be discretized into items before
the exploration starts, and without the benefit of choosing
the discretization that maximizes divergence detection in the
resulting itemsets. The second drawback is that the exploration
ignores the presence of hierarchies.

A. Benefits of Item Hierarchies

Hierarchies are instrumental in finding highly divergent
subgroups with support size above a specified threshold. To
understand the interplay between hierarchy and exploration
for divergent subgroups, consider a dataset consisting of two
attributes, a continuous income, and a discrete zip code.
To study the dataset at a national level, we may wish to
consider itemsets based on income alone, in which case a fine
discretization may work well: we could for instance divide
income in intervals of $100, with the confidence that each
resulting itemset (such as, for instance, 51, 300 ≤ income ≤
51, 400) has support above the threshold (i.e., contains enough
people to be statistically significant). But if we wish to study
the situation in a particular zip code, dividing income in ranges
of $100 may be much too fine, as it would result in most
itemsets having support below the threshold. A coarser income
discretization might be necessary to study zip code and income
jointly. With fixed discretizations, there is a trade-off: a fine
discretization enables the study of individual attributes, but
a coarser discretization on each attribute may be necessary
to study itemsets involving multiple attributes. Hierarchies
enable us to have both benefits at once. In a hierarchical
discretization, an attribute is discretized into coarse items,
which in turn are discretized in finer items, and so on, up
to items that are just larger than the support. An itemset can
consist of items at different levels of granularity (at different
levels in the hierarchy) for the various attributes.
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A hierarchical discretization allows the selectivity budget to
be spent optimally during the exploration for highly divergent
subgroups, combining high selectivity (items lower in the
hierarchy, and thus with smaller support) for some attributes,
with lower selectivity (items higher in the hierarchy) for
others. In the following, we introduce hierarchies, and we
show that they may be beneficial both for the discretization of
continuous attributes and the exploration of categorical ones.

B. Item Hierarchies

In a hierarchy of items, each item for an attribute can be
refined by two or more items whose supports forms a partition
of the support of the refined item. For example, age > 50 can
be refined into 50 < age ≤ 60 and age > 60. We use ≻A to
indicate the refinement relation between items for an attribute
A, so that we write (age > 50) ≻age (50 < age ≤ 60). The
precise definition is as follows.

Definition 4.1 (Item hierarchy.): Let A be an attribute with
domain DA. An item hierarchy (IA,≻A) for A consists of
a set IA of items for A, along with a hierarchy relation
≻A⊆ IA × IA; we write α ≻A β to mean that β is a (one-
step) refinement of α, that is, it includes only a portion of the
instances of α. We require that Dα is partitioned into the set
of Dβ for all β with α ≻ β. Precisely, we require ≻A to be
acyclic, and:

• If there is β such that α ≻A β, then Dα = ∪β:α≻AβDβ ;
• If α ≻A β1 and α ≻ β2 with β1 ̸= β2, then Dβ1 ∩Dβ2 =

∅.
A hierarchical discretization for a dataset D consists in an
item hierarchy for each of the attributes of D.

Item hierarchies can be derived directly by explicit structural
dependencies of the attributes themselves, provided through
user-defined dependencies or revealed by analyzing data. Ex-
amples of explicit hierarchies are geographical hierarchies,
IP addresses (where the hierarchy corresponds to their byte
sequence), or product taxonomies. For categorical attributes,
hierarchical dependencies can also be automatically derived by
considering functional dependencies between attributes [12].

For continuous attributes, we propose a hierarchical dis-
cretization process to automatically define the data ranges and
the item hierarchy in a way that facilitates the exploration of
divergent itemsets.

V. HIERARCHICAL DIVERGENCE EXPLORATION

H-DIVEXPLORER is an automated hierarchical-subgroup
exploration approach based on the use of generalized items,
where the discretization is guided by the divergence of the
statistics of interest. It identifies divergent subgroups in two
steps. The first step consists in discretizing any continuous
attributes into item hierarchies. This discretization is driven by
the statistic whose divergence we are interested in measuring,
as well as by the minimum support size of any divergent
itemset we are interested in detecting. For discrete attributes,
we consider item hierarchies using any hierarchy intrinsic in
the attributes.

In the second step, the generalized subgroup discovery algo-
rithm leverages the item hierarchies derived by the hierarchical
discretization and the predefined hierarchies for the categorical
attributes, if available. The algorithm outputs the frequent
itemsets ranked according to their divergence, and it enables
users to explore the lattice of frequent itemsets, identifying
data subgroups with anomalous behavior.

We describe both steps in detail below. In the next section,
we will provide results that illustrate the superiority of this
divergence-driven hierarchical discretization, compared with
the prior non-hierarchical approach.

A. Hierarchical Attribute Discretization

To generate the item hierarchy for a continuous attribute,
we inductively generate a binary tree: each node of the tree
represents an item, and when a node is split into two children,
the corresponding item is refined into the children items. An
example tree for the #prior attribute of the compas dataset
is depicted in Figure 1. For each attribute, the leaf items,
corresponding to the leaves of the tree, define a discretization
consisting of non-overlapping intervals. These leaf items can
be used directly by non-hierarchical subgroup identification
methods such as [4]–[6]. Our method will use the entire tree.

Our discretization trees are constructed much like decision
trees [20], [21], by starting from a root node representing all
data, and by recursively splitting the leaf nodes in a way that
maximizes the split gain under the support constraint. The root
of the tree for attribute A represents the complete range of A.
To each node ν we associate the item I(ν), which has the
form A ∈ J(ν), where J(ν) is the interval describing the
range of values of A associated with ν. A node ν can be split
into two children ν′, ν′′ with respect to a value a ∈ DA; the
two children correspond to the intervals J(ν) ∩ {A | A ≤ a}
and J(ν) ∩ {A | A > a}. We choose the splitting point a so
that (i) the support of each of the two nodes ν′, ν′′ is above
a prescribed support level, and (ii) a is chosen among values
satisfying (i) in a way that maximizes the gain of the split, to
be defined below.

The process greedily selects an interval split according to a
local optimality criterion, in order to identify divergent items.
We consider two such split optimality criteria: one tied to
entropy, and a novel one tied directly to divergence. The
construction of the tree terminates when no more nodes can
be split under the support constraint. For decision trees, the
split gain is defined in terms of instance labels. We describe
below the split criteria based on entropy and divergence.

Entropy-based gain criterion. Entropy is commonly used
to define splitting criteria for decision tree-induction algo-
rithms [20], [21] and discretization techniques [22], [23].

Recall that our ultimate goal is to determine items, and thus
itemsets, where a measure f : 2D 7→ IR assumes divergent
values with respect to the dataset as a whole. The entropy-
based criterion is applicable when the measure f has the form
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of a probability, that is, when f is defined on the basis of a
boolean outcome function o : D 7→ {T, F,⊥}, as follows:

fo(S) =
#{x ∈ S | o(x) = T}
#{x ∈ S | o(x) ̸= ⊥}

=
k+

k+ + k−
,

where S ⊆ X is the set whose measure we are taking, and

k+ = #{x ∈ S | o(x) = T} k− = #{x ∈ S | o(x) = F} .

Intuitively, fo(S) is the probability that the outcome is true,
discounting from the computation of the probability the ele-
ments with outcome ⊥. Many measures f of interest in the
study of classifier performance can be expressed via boolean
outcome functions [5]. For instance, to capture the false-
positive rate, we let o(x) = T for false-positives, o(x) = F for
true-positives, and o(x) = ⊥ for every negative instance x.

In classification trees, entropy-based criteria are used to split
nodes so as to increase the statistical purity of the resulting
nodes [27]. Similarly, we can use entropy-based criteria to
split instances according to the purity of the outcome function.
Since fo(S) = k+/(k+ + k−) is a probability, we can define
the entropy H(S, fo) of the outcome over a set of instances
S by

H(S, fo) = −fo(S) log(fo(S))− (1−fo(S)) log(1−fo(S)) .

As in decision trees, we use the entropy H(S, fo) to measure
the quality of a split: the lower the entropy, the higher the
purity, the better the split. To favor balanced splits, we weigh
the entropy by the size of the split nodes, as common in
classification trees [20], [21]. Thus, we let the gain of the
split of S into S1, S2 be:

g(S1, S2 | S, fo) =

=
S

#D
H(S, fo)−

[#S1

#D
H(S1, fo) +

#S2

#D
H(S2, fo)

]
.

Divergence-based gain criterion. The entropy-based split-
ting criterion can only be applied for measures f that have the
form of a probability, that is, that are defined using a boolean
outcome function. Other node splitting methods, devised for
quantitative outcomes, are typically driven by error functions
such as mean square error [28], and are not applicable to an
ensemble property such as divergence. Only the divergence-
based criterion can be applied to the divergence of general
outcome functions, such as the income in the folkstables
dataset [29]. For a general measure f : 2D 7→ IR, we define
the gain directly with reference to f , via:

g(S1, S2 | S, f) = #S1

#D
·|f(S1)−f(S)|+#S2

#D
·|f(S2)−f(S)|.

The divergence criterion has a form similar to the entropy one,
again balancing the gain (in this case, the divergence of the two
intervals) by their size. When both applicable, the two criteria
may yield different discretizations; our experiments will show
that their effectiveness is similar.

Discussion. An alternative to deriving an individual tree for
each continuous attribute is to consider all attributes jointly

and build a single combined tree. The advantage of a combined
tree is that it is well suited to capturing dependencies between
attributes. However, combined trees have several drawbacks.
First, it is difficult to control the granularity of the splits,
or even to guarantee that each attribute is discretized. The
tree is constructed with a single minimum-support constraint,
and once nodes reach that minimum support, they are no
longer split, regardless of whether all continuous attributes
have been split. Second, combined trees do not give rise to
an item hierarchy for each attribute. Each attribute may be
split differently across the nodes of the tree since attribute
dependencies are considered. Finally, when there is a large
number of discrete attributes, building a combined tree can
be less efficient than building individual trees. When splitting
a node in the combined tree, all attributes (discrete and
continuous) need to be considered to choose the optimal split.

Hierarchies for Categorical Attributes. For a categorical
attribute A, we simply take as items all items A = a for
all a ∈ DA. Further, we add all items corresponding to the
item hierarchy. For example, if the attribute is an IP address,
we can consider attributes of the form A = a for each IP
address a, and also, A = al, where al is the truncation of a
to its first l bytes, for 1 ≤ l ≤ 3. Thus, an IP address such as
118.114.119.88 will belong both to the items 118.114.119.88,
118.114.119, 118.114, and 118.

B. Generalized divergence subgroup extraction

The original DIVEXPLORER exploits well-know frequent
pattern mining algorithms Apriori [25] and FP-Growth [26]
to extract frequent itemsets. These algorithms, per se, do not
cope with generalized itemsets: they assume that all items
for the same attribute have disjoint support, and they are
unaware of any hierarchical relation between them. We extend
the DIVEXPLORER algorithm to deal with item hierarchies
and extract generalized itemsets by using generalized frequent
pattern (GFP) techniques [15], [16], [30]. In particular, we in-
tegrated the divergence computation into generalized versions
of Apriori and FP-growth by inspiring our implementation to
the works in [16], [31].

The high-level description of the algorithm for the gen-
eralized divergence subgroup extraction is reported in Algo-
rithm 1. Let Γ be a hierarchical discretization for a dataset D,
consisting in a hierarchy of items for each attribute of dataset
D. The hierarchies in Γ include both the predefined hierarchies
for categorical attributes, and the hierarchies obtained via our
hierarchical discretization process for continuous attributes.
For each stepi of a generic GFP technique, generalized
itemsets are extracted (Line 3). The general function ex-
tractGeneralizedItemsets extracts the generalized itemsets; its
implementation varies depending on the GFP used (e.g., stepi
could be level i iteration in Apriori [25], or the recursive step
of FP-growth [26] on the FP-tree). During the computation
of the itemsets, we accumulate not only the support count,
as done by all mining algorithms, but also the total of the
outcome function in each itemset (and the count of how
many outcome values are ⊥). In this way, at the end of
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frequent itemset extraction, we can compute not only the
support size of each itemset, but also its divergence, without
requiring any additional pass over the original dataset. Hence,
our algorithms inherit the same computational efficiency as
the frequent pattern mining algorithms from which they are
derived.

The hierarchical exploration considers items at all granular-
ity levels, rather than just the finest (leaf) items. Hence, the
hierarchical exploration considers a superset of the itemsets
considered by non-hierarchical methods. Thus, for the same
support threshold, hierarchical exploration is guaranteed to
find itemsets (subgroups) that are at least as divergent as those
found by non-hierarchical exploration.

C. Polarity pruning

When we seek itemsets with high (absolute-value) diver-
gence, the divergence can be either positive or negative.
Polarity pruning is a powerful heuristic for the identification
of high-divergence itemsets. We apply polarity pruning to the
items generated by our discretization trees, as they are obtained
via a controlled splitting process that maximizes divergence.

When searching for itemsets with high positive divergence,
the heuristics will combine into itemsets only items that,
individually, cause positive divergence; and symmetrically for
negative divergence. In other words, the heuristic attributes a
polarity to each item: when considered in isolation, items with
positive polarity increase divergence, and items with negative
polarity decrease it. The heuristic only combines items with
the same polarity to form itemsets: as this prunes the search
space, we refer to it as polarity pruning.

Polarity pruning leads to a speedup that is typically expo-
nential in the number of continuous attributes. Indeed, if there
are n continuous attributes, assuming that for each attribute
roughly half of the items have positive and negative polarity,
the exploration speedup is of the order of 2n−1. This because
itemsets are created selecting at most one item per attribute,
and the polarity criterion requires that all polarities of selected
items match. The experimental results reported in Sections
VI-B and VI-F show that this speedup typically comes for
free, in the sense that the maximum divergence of the itemsets
found is the same or very close, when polarity pruning is used
or not.

VI. EXPERIMENTAL RESULTS

We provide experimental results that, together, show the
effectiveness of the hierarchical approach to discretiza-
tion and anomalous group discovery implemented in H-
DIVEXPLORER. We first compare H-DIVEXPLORER to stan-
dard non-hierarchical DIVEXPLORER on a wide range of
datasets, focusing the qualitative evaluations on the well
known compas and folktables datasets. Next, we turn our
attention to the synthetic-peak dataset, an artificial dataset
in which we injected anomalous behavior in a controlled
way. In Section VI-C we compare the hierarchical and non-
hierarchical approaches over synthetic-peak, showing how the
advantage of the hierarchical approach is due to its abil-
ity to spread the fixed “selectivity budget” (the narrowing

Algorithm 1: Generalized divergence subgroup extrac-
tion.

Input: D, f , Γ, s
Output: Generalized itemsets divergence GI∆

1 GIs divergence=[];
2 for stepi in Generalized Frequent Pattern Mining

steps do
3 Istepi

= extractGeneralizedItemsets(D,Γ, s, stepi);
4 for I in Istepi

do
5 I .s, I .∆f = evaluate itemset(I , f(D))
6 if I .s ≥ s then
7 GIs divergence.append(I);
8 return GIs divergence

down of subgroups, while staying over the support size)
across attributes. In Section VI-E we study the sensitivity
of the approach with respect to the parameter driving the
discretization. In Section VI-F we offer some analysis of the
performance of H-DIVEXPLORER. Finally, in Section VI-G,
we provide a detailed comparison of H-DIVEXPLORER with
prior approaches, including Slice Finder [8] and SliceLine [6].

In the following, we denote with base exploration the
exploration performed without considering hierarchies, as
implemented in Slice Finder, SliceLine and DIVEXPLORER
and with base itemsets the itemsets returned via such non-
hierarchical exploration. We denote with hierarchical or gen-
eralized exploration the one performed by H-DIVEXPLORER
and with generalized the itemsets it derives. Throughout,
we denote by st the support used in the tree construction
for individual attribute discretization, and by s the (smaller)
support used for subgroup discovery.

A. Datasets

We perform qualitative and quantitative experiments on two
public datasets: compas and folktables, and on one artificial
dataset, synthetic-peak, created by us and publicly available
at [32]. For quantitative and performance experiments, we
also use the adult, bank in its full version, german, online
shoppers intentions, wine datasets [33]. Table II shows the
main characteristics of all the adopted datasets, after standard
preprocessing steps [33]. Furthermore, in the bank and inten-
tions datasets, we consider the month as a numerical attribute
to derive discretization hierarchies.

Compas. The compas dataset [14] provides data on criminal
defendants, such as age, gender, race, number of prior offenses,
and whether the charge under consideration is a felony or
a misdemeanor. Each defendant also has a score indicating
the probability of recidivism in the two years subsequent
the charge, computed according to the proprietary COMPAS
algorithm. We consider high-risk scores (≥ 8) as a prediction
of recidivism. For each defendant, we also know the true
recidivism. We can thus compute the false-positive rate, which
is the probability that a defendant is incorrectly predicted
to recidivate. The compas dataset includes 6,172 instances,
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and has continuous attributes age, #prior (number of prior
offenses) and stay (number of days spent in jail), and discrete
attributes gender, charge degree (misdemeanor or felony) and
the ethnicity of the defendant.

Folktables. The folktables dataset [29] is based on US
Census data. We use here the data for the census year 2018
and the state of California. We use the attributes of the income
prediction task [34], and we consider the divergence of the in-
come (the measure f we consider is directly the income). The
dataset includes two continuous attributes: age and number of
hours per week that a person works. The dataset consists of
195,665 instances and a total of 10 attributes. We also consider
item hierarchies for two categorical attributes: place of birth
(POBP) and occupation (OCCP). The item hierarchy for the
place of birth is a geographical hierarchy. The occupation
item hierarchy is obtained from information available in the
data. More specifically, each occupation category available in
the dataset (e.g., MGR-Financial Managers, MED-Dentists) is
mapped to its supercategory (e.g., MGR, MED).

Synthetic-peak. The dataset consists of 10,000 points ran-
domly chosen in the 3-dimensional space [−5, 5]3; each co-
ordinate corresponds to an attribute. We set the class label
to T or F with equal probability. We then inject a gaussian
error rate by setting the predicted class label as follows. We
define a multivariate normal random variable with a mean of
[0, 1, 2] and covariance of 1. We first generate prediction
labels that reflect the class labels. We then flip the prediction
labels with a probability equal to the normalized multivariate
normal distribution. The error rate is therefore a function of the
normalized gaussian distribution of the three attributes. We use
this dataset to illustrate the effectiveness of item hierarchies
in locating anomalous subgroups defined by multiple attributes
(in this case, the three coordinates).

The task of the adult dataset is to predict whether the
income exceeds $50k per year or not based on census data.
The bank dataset describes the subscription outcomes of a
bank marketing campaign. We adopt the ‘full’ version from
[33]. The german dataset describes loan applications where
the task is to predict the individuals’ credit risks (good or
bad). The online shoppers purchasing intentions dataset [35]
consists of online sessions and the task is to predict the user’s
intention to finalize the transaction. The wine dataset consists
of physicochemical measures for red and white wines; we
predict if the quality score is greater than 5 or not.

B. Benefits of Hierarchical Exploration
In our first series of experiments, we measure the benefit of

item hierarchies in discovering highly divergent subgroups in
the public datasets compas and folktables. We compare three
different discretization methods:

• Manual: this is the discretization used in previous work
on compas [5], [14].

• Tree discretization, base: we use our tree discretization
process, and we retain only the leaf items. These leaf
items can be analyzed via DIVEXPLORER, as no hierar-
chy is present.

dataset |D| |A| |A|num |A|cat
adult 45,222 11 4 7
bank (full) 45,211 15 7 8
compas 6,172 6 3 3
folktables 195,556 10 2 8
german 1,000 21 7 14
intentions 12,330 17 11 6
synthetic-peak 10,000 3 3 0
wine 9,796 11 11 0

TABLE II: Dataset characteristics. |A|num is the number of
numerical attributes, |A|cat of categorical ones.

• Tree discretization, hierarchical: we use our tree dis-
cretization process to generate item hierarchies that are
then explored via H-DIVEXPLORER.

We apply the tree-based hierarchical discretization technique
for each continuous attribute with a uniform support threshold
stree = 0.1, so that the generated items will contain at least
10% of the dataset instances. Of course, combining items for
different attributes, itemsets with support below 10% can be
produced. For each subgroup discovery strategy, we measure
the maximum divergence of the extracted itemsets.

Compas dataset. We focus on the divergence of the false-
positive rate (FPR), which is the rate at which defendants
are incorrectly predicted to recidivate. Table III reports the
top FPR-divergent itemsets of the compas dataset according
to the three discretization and exploration settings. The tree
discretization uses support threshold st = 0.1, while the
divergence subgroup exploration via DIVEXPLORER and H-
DIVEXPLORER uses support thresholds s = 0.05, 0.025, and
0.01. We see that the tree-generated discretizations enable the
identification of subgroups with higher divergence, compared
to the manual discretization. This effect is due to the fact
that the tree generation process is guided by divergence.
Further, we see that the hierarchical approach leads to the
identification of subgroups with higher divergence than those
found via non-hierarchical techniques, for the same value of
the exploration support. Consider for example the subgroup
exploration with s = 0.025. The generalized itemset obtained
via H-DIVEXPLORER is {age=[25-32], stay≥3.0, #prior≥9},
and has divergence 0.745. All three items derive from con-
tinuous attributes and are derived at different levels of the
hierarchies. While #prior≥9 is a leaf node, both the stay and
age items are internal nodes, which represent generalizations
of more refined items. This subgroup can’t be identified by
non-hierarchical subgroup identification techniques. Without
hierarchical exploration, the highest-divergent subgroup is
age≤24, charge=F, #prior=[4-8] and has divergence 0.662.

The hierarchical exploration is able to automatically adapt to
the proper granularity at the intersection of multiple attributes.
While for the age between 25 and 32 the prior which is
frequently associated with and with high divergence is greater
than 9, for younger defendants (age≤24), the number of priors
is lower (equal to [4-8]), probably for indeed their younger age
and a lower chance for having committed more prior offenses.
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s Exploration approach Itemset Sup ∆FPR t

0.05
Manual discretization age=[25-45], #prior>3, race=Afr-Am, sex=Male 0.13 0.220 7.1
Tree discretization, base #prior≥9, race=Afr-Am 0.09 0.363 8.
Tree discretization, generalized age<=32, stay≥3.0, #prior≥4, sex=Male 0.06 0.378 6.7

0.025
Manual discretization age=[25-45], stay=1w-3M, #prior>3, race=Afr-Am, sex=Male 0.03 0.292 4.4
Tree discretization, base age=[28-32], #prior≥9, sex=Male 0.03 0.590 6.8
Tree discretization, generalized age=[25-32], charge=F, #prior≥9, sex=Male 0.03 0.621 7.7

0.01 Manual discretization age<25, charge=F, #prior>3 0.02 0.618 5.7
Tree discretization, base age≤24, charge=F, #prior=[4-8] 0.02 0.662 6.2
Tree discretization, generalized age=[25-32], stay≥3.0, #prior≥9 0.02 0.745 8.1

TABLE III: compas dataset: top divergent itemsets found by base DIVEXPLORER using Manual and Tree Discretization (leaf
items only) and by the generalized exploration of H-DIVEXPLORER with st = 0.1; t is the statistical significance of divergence.

s Itemset type Itemset Sup ∆income t

0.050 base MAR=Married, RAC=White, SEX=Male, WKHP ≥44.0 0.07 81.0k 62.3
generalized AGEP≥35.0, OCCP=MGR, SEX=Male 0.05 90.2k 60.6

0.025 base SCHL=Prof beyond bachelor 0.03 105.3k 46.7
generalized AGEP≥35.0, OCCP=MGR, SEX=Male, WKHP≥44.0 0.03 119.3k 50.6

0.010 base SCHL=Prof beyond bachelor, WKHP≥44.0 0.01 163.5k 40.3
generalized AGEP≥35.0, SCHL=Prof beyond bachelor, SEX=Male, WKHP≥40.0 0.01 172.3k 39.3

TABLE IV: folktables dataset: top divergent itemsets found by DIVEXPLORER and H-DIVEXPLORER using Tree Discretization
both base (leaf items only) and hierarchical with st = 0.1; t is the statistical significance of divergence.

Folktables dataset. Top divergent itemsets are reported in
Table IV. The manual discretization approach has been omitted
because no common discretization is available in the literature.
As for compas, we use support 0.1 for the trees used in
attribute discretization. The exploration is conducted with
support thresholds s equal to 0.05, 0.025 and 0.01. For all the
support thresholds, the hierarchical exploration of divergence
reveals the highest divergence.

Consider for example support threshold 0.05. The high-
est divergence is achieved by the generalized itemset
{AGEP≥35.0, OCCP=MGR, SEX=Male}, corresponding to
men with age greater than or equal to 35 and a managerial
occupation. This itemset is characterized by an average income
that is 90.2k greater than the average of the entire dataset.
Both items AGEP≥35.0 and OCCP=MGR are non-leaf items.
Age leaf items correspond to finer age intervals. The item
OCCP=MGR represents a managerial occupation, and in the
tree is split into finer categories, e.g., MGR-Sales Managers
and MGR-Financial Managers. Only by combining these non-
leaf items in a hierarchical exploration, we are able to find an
itemset including the OCCP attribute that is above the support
threshold 0.05. This illustrates the ability of our approach in
detecting divergent behaviors for sensitive attributes such as
age, gender, and occupation by selecting the proper granularity
level. This itemset, which is relevant for bias analysis, would
not have been detected by base exploration approaches, due
to the low support of its base items.

Quantitative analysis. Figure 2a summarizes the maximum
divergence of the itemsets that the base exploration of DIV-
EXPLORER (in dashed lines) and our generalized exploration
identify for the adult, compas, german, intentions, synthetic-
peak and wine datasets. For compas we adopt the FPR
as in the previous analysis. For synthetic-peak we use the
already provided class label and we consider the error rate
as described in Section VI-A. For the other datasets, we use
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Fig. 2: (a) The highest divergence found, and the (b) execution
time for the base exploration in dashed line, and our hierar-
chical subgroup exploration in solid line. We use st = 0.1 and
the divergence gain criterion.

a random forest classifier with default parameters to provide
the outcome function and we compute divergence for the error
rate. Figure 3a shows the maximum income divergence for
folktables. We report the result separately as the scale (income)
is not a probability; hence, only the divergence criterion can be
used for the discretization trees. In all cases, the hierarchical
exploration enables the identification of subgroups with higher
divergence, compared to when only leaf items are used.

Entropy-based vs. divergence-based tree node splitting. We
compare the divergence results for both the entropy-based gain
criterion and the divergence-based one. We consider all the
analyzed datasets except folktables because the false-positive
rate and the error rate are defined via a boolean outcome
function and have the form of a probability. The results are
reported in Figure 3b (solid line for the divergence criterion
and dotted line for the entropy one). While the two criteria
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Fig. 3: (a) Highest identified divergence for folktables dataset,
divergence criterion, base vs. hierarchical exploration. (b)
Highest divergence found by hierarchical exploration with the
divergence (solid line) vs. entropy (dotted line) criteria.
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Fig. 4: (a) The highest divergence found and the (b) execution
time for our hierarchical subgroup exploration with the com-
plete (solid line) and pruned search (pr., dotted lines); st = 0.1
and divergence gain criterion.

in general do not yield the same discretization, they show
similar effectiveness in identifying anomalous subgroups. The
divergence criterion has the advantage of being applicable to
a generic outcome function.

Effectiveness of polarity pruning. We evaluate the effec-
tiveness of polarity pruning (its efficiency is evaluated in
Section VI-F). Figure 4a compares the highest divergence
found by the complete and the polarity-pruned search. Polarity
pruning is very effective. While allowing a reduction of the
search space, it does not impact divergence results. More
specifically, it generally achieves the same results as the
complete exploration. The highest divergence differs by a
slight amount in only four cases of all explored datasets and
support thresholds.

C. Identification of injected anomalies

The chief advantage of hierarchical discretization and ex-
ploration, compared to an exploration that relies only on leaf
items, is to enable the “selectivity budget” to be spent on

multiple attributes in the search for divergent subgroups. To
illustrate this, we turn to our artificial dataset synthetic-peak,
consisting of a rectangular domain filled with random points.
The random points have a true class which is T, F with equal
probability; the predicted class has an error rate that depends
on the proximity to a point of maximum anomaly. Because
the anomaly is centered around a point in three-dimensional
space, the divergence in error rate is best detected when the
“selectivity budget” can be spent homogeneously on the three
coordinates.

As before, we derive the trees with respect to a support
threshold of 0.1, which is fine enough to identify, for each
attribute, intervals around the anomalous point. Then, we use
DIVEXPLORER to explore itemsets composed of leaf items
only, and H-DIVEXPLORER to explore generalized itemsets.

Figures 5a and 5c visualize the itemset with highest di-
vergence for an exploration support threshold of s = 0.05.
Each figure shows, for a given attribute, the projection of the
normalized multivariate normal distribution used to generate
the errors, and the ranges identified in the itemset. The
asymmetry in the results — the reason why the attributes
a, b, c are treated differently — is due to two factors. First, the
anomaly center is not situated in the center of the rectangle.
Second, the coordinates a, b, c of the data points in synthetic-
peak are chosen uniformly at random, and the random density
fluctuations drive the tree-generation algorithms used for dis-
cretization to treat a, b, c slightly differently.

Figure 5a shows that, when base itemsets are used, the
exploration returns {b = [−0.19, 1.34]} with divergence
∆error = 0.045. This itemset is based on attribute b only;
it is not possible to join it with items for a or c without going
below the support threshold 0.05. In Figure 5c, we see instead
that if we use item hierarchies, we can find a generalized
itemset consisting of items for a, b, c with support over the
0.05 threshold, and divergence ∆error = 0.229. Hierarchical
exploration enables the identification of subgroups that are
over four times as divergent.

Figures 5b and 5d show the results for exploration sup-
port 0.025. For this smaller support, the base exploration finds
an itemset constraining both b and c. Still, its divergence
is inferior to the one of the subgroup found by hierarchical
exploration.

This example used a 3-dimensional dataset for ease of illus-
tration. The performance difference between the hierarchical
and base approaches would be larger in higher-dimensional
datasets.

D. Comparison with unsupervised discretization

Again on our synthetic dataset synthetic-peak, we compare
the quality of H-DIVEXPLORER, with quantile discretization
followed by base DIVEXPLORER (that is, considering the leaf
items generated with quantiles only). We note that in the
synthetic-peak dataset, the quantile discretization corresponds
roughly to the uniform one, as the values for the a, b, c
attributes are generated uniformly at random. Contrary to
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(a) Base itemset, s = 0.05, ∆error = 0.045
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(b) Base itemset, s = 0.025, ∆error = 0.212
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(c) Generalized itemset, s = 0.05, ∆error = 0.229
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(d) Generalized itemset, s = 0.025, ∆error = 0.297

Fig. 5: Ranges of the itemset with highest divergence obtained via the base and our generalized one with s = 0.05 and
s = 0.025. The shaded areas indicate the attribute ranges included in the itemsets.
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(a) Base itemset, default parameters
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(b) Base itemset, effect size threshold = 1

Fig. 6: Ranges of the itemset with highest divergence obtained via the base exploration with Slice Finder (see Section VI-G).
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Fig. 7: Highest divergence found by H-DIVEXPLORER and
the best result for the quantile discretization with base DIV-
EXPLORER for the synthetic-peak dataset.

our discretization, quantile discretizations are unsupervised,
as they are not guided by the divergence of interest.

We vary the number of bins for the discretization from 2 to
10, and we extract the itemsets and their divergence via the
base subgroup discovery of DIVEXPLORER. We consider the
input bin size which achieved the highest divergence for each
evaluated minimum support threshold and we report the results
in Figure 7. H-DIVEXPLORER achieves the highest results for
all the input thresholds: the generalized exploration, relying on
hierarchical discretization, is able to adapt and identify the best
item granularity.

E. Sensitivity analysis

The st parameter represents the minimum support of the tree
nodes, which is used in the discretization process. We evaluate
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Fig. 8: Highest divergence for base and generalized itemsets
varying st for the synthetic-peak and compas datasets (s =
0.025).

the impact of varying st on divergence. For these experiments,
we set the divergence exploration minimum support s to 0.025.

Figures 8a and 8b plot the maximum divergence of base
and generalized itemsets when varying st for the compas and
synthetic-peak datasets. We do not report the results for the
folktables dataset, because the highest divergence ∆income is
constant for the considered st range (∆income is 105.3k for
the base and 119.3k for the hierarchical explorations).

In Figures 8a and 8b the maximum divergence returned by
the hierarchical exploration is stable for a wide range of st
values. Only when the minimum node support st becomes
very high (i.e., nodes have to be supported by a large number
of instances, for example more than 15% for the synthetic-
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peak dataset), maximum divergence drops, as the items are
too coarse. The base exploration is instead sensitive to the
st parameter. More specifically, for st < s, leaf items
generated via tree discretization may be characterized by a
support lower than the s support threshold used for subgroup
identification. Hence, since fewer items will be available for
exploration, subgroup identification may return significantly
lower divergence itemsets.

This experiment highlights the interplay between discretiza-
tion and subgroup exploration. When discretization intervals
are set a-priori, their (improper) definition may prevent the
identification of interesting anomalous subgroups.

As a final remark, the hierarchical exploration, beyond
being more stable when varying st, always identifies itemsets
characterized by the highest divergence.

F. Performance analysis

All the experiments were performed on a PC with Ubuntu
22.04, 128 GB RAM, Intel Core i9.

The time required by the discretization process is always
negligible compared to that required by the exploration. For
wine and intentions dataset, characterized by the highest num-
ber of continuous attributes, the discretization process takes
less than 1s and 7s with st = 0.1 respectively.

As expected (Figure 2b), hierarchical subgroup exploration
takes more time than base exploration, because a larger
number of items is generated and more itemsets have to be
considered. However, while requiring more time, the hierarchi-
cal exploration allows the identification of higher divergence
itemsets as shown in Figure 4.

Figure 4b shows the efficiency of the proposed polarity
pruning. The average performance gain ranges from x1.4 for
the adult dataset to x27.6 for the wine dataset, which is
characterized by a larger number of continuous attributes,
reaching a peak of x116.8 for low support (s = 0.01). Hence,
polarity pruning allows a significant reduction of computation
time, while identifying divergent itemsets as effectively as the
complete search (see Figure 4).

G. Comparison with prior subgroup identification approaches

We compare H-DIVEXPLORER with two other base explo-
ration approaches: Slice Finder [8] and SliceLine [6].

All the approaches perform a lattice search, with differ-
ent stopping criteria. Slice Finder performs a non-exhaustive
search of the top-k slices which stops when a minimum effect
size threshold is overcome. SliceLine and DIVEXPLORER both
leverage frequent pattern mining techniques and consider min-
imum support threshold and, for [6], monotonicity properties
of errors for pruning. While H-DIVEXPLORER also exploits
the minimum support as stopping criterion, differently from
all base exploration approaches, it explores a richer lattice that
includes generalized items.

Since the three approaches measure the anomaly and ex-
plore data slices differently, it is difficult to compare their
exploration results. Hence, we leverage our synthetic dataset
synthetic-peak for which the problematic behavior is known

and we evaluate the ability of Slice Finder and SliceLine1 in
identifying it. Data is discretized using leaf items as in the
experiments reported in Section VI-C.

Figure 6a shows the itemset with the highest effect size
identified by Slice Finder with default parameters. Since the
slice {(c = [1.37, 3.16])} is already problematic (with effect
size 0.79, larger than the 0.4 input threshold) the search stops.
Only if we increase the input threshold to 1, Slice Finder
identifies a slice with the highest effect size composed by
all the three terms (Figure 6b). However, this slice is not
representative, because it includes only 13 instances (i.e., it
has support 0.0013). Since Slice Finder does not control the
slice support, it can fail to identify larger and more significant
data slices.

The base exploration of SliceLine suffers from the same
limitation as the base exploration of DIVEXPLORER. We
consider the same minimum support thresholds (s = 0.05
and 0.025) of the experiments in Section VI-C. We vary the
weight parameter α of SliceLine (importance of the average
slice error) and consider the best slice in terms of the highest
error rate. The best itemsets for the 0.05 and 0.025 support
thresholds of SliceLine match the ones identified by base
DIVEXPLORER, reported in Figures 5a and 5b respectively.

These experimental results highlight the limitations of the
base exploration performed by previous approaches. Fixed
discretization hampers the identification of large and frequent
slices associated with a problematic subgroup, while hierar-
chical exploration allows an adaptive identification of most
problematic subgroups.

VII. CONCLUSIONS

This paper introduced hierarchical discretization and sub-
group exploration. We evaluated the performance of our hierar-
chical approach H-DIVEXPLORER on both real and synthetic
datasets. Our results show that a hierarchical approach enables
a flexible extraction of subgroups and is robust to the choice
of discretization. We believe it holds promise in other areas
related to the study of ML pipeline quality and fairness.
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